

FACULTY OF ENGINEERING

Designing a Teacher PD Programme for Al – First Steps

Annabel Lindner | Friedrich-Alexander-Universität Erlangen-Nürnberg

Research Questions Which central concepts and topics of AI should be introduced in a professional development (PD) measure for teachers about artificial intelligence?
 Which format should be used for an extensive PD programme?
 Which aspects of the teachers' pedagogical content knowledge (PCK) need to be developed further in a PD measure to successfully teach AI?

Overall goal: AI Literacy and AI-teaching competency for CS teachers

Content Analysis
 Russell/ Norvig: AIMA 3 Görz et al.: Handbuch der Künstlichen Intelligenz ACM Classification System (Areas: Artificial Intelligence & Machine Learning) ACM/ IEEE Computer Science Curricula 2013 (Area: Intelligent Systems) ACM Taskforce Data Science Curriculum 2021 (Area: Artificial Intelligence & Machine Learning) AI4K12: Big Ideas of AI Long/ Magerko 2020: What is AI

Teachers are able to							
Introduction	GOFAI(Good old-fashioned AI)	Machine Learning	Applications of AI	Ethics and Society			
• recognise	Search	• define machine learning and distinguish	 describe the properties of an 	explain the difference between			
applications that are	 describe the difference between informed and uninformed 	it from classical approaches to AI	intelligent agent and possible	strong and weak AI and give			
using Al.	search methods focusing on heuristics (cost vs benefit) and	(GOFAI).	realizations, highlighting the aspect	examples of the two concepts.			

	OT STRIPS.	DCK		
	 describe the difference between a planning system and classical search strategies. explain how forward & backward search work. implement a simple planning algorithm, e.g. a simple version of STRUPS. 	 explain exemplary mathematical and statistical backgrounds of machine learning (e.g. of neural networks). 	 environment). describe an approach to coordinating the actions and perceptions of different robots. 	
milestones in Al history. • identify central characteristics and challenges of Al problems.	 describe general possibilities for digitally representing complex real-life contexts and how these can be used for reasoning and decision-making processes. explain how an expert system works. translate natural language statements into logic. implement a closed set of facts using logic programming, e.g. in PROLOG. discuss the limitations and problems of logic representation. reason with probabilities based on a real-world problem, e.g. using Bayes' theorem. describe and compare different approaches to reasoning. 	 responsible use (including potential problems, e.g. overfitting, bias). explain how different machine learning methods work (e.g. decision trees, neural networks, Bayes' classifier, GAN) and analyse their strengths and weaknesses in concrete application situations. implement specific machine learning algorithms from different paradigms (e.g. linear regression/ classification, k-means, O learning, etc.) 	 algorithms). identify the challenges of processing and extracting information from natural language (e.g. meaning, dialect, background noise). implement a procedure for feature extraction in images and use it in a classification algorithm. explain the use of AI in robotic systems and how these applications differ from robotics without AI (e.g. loarning, interaction with the 	 explain aspects necessary for socially acceptable, ethical AI (e.g. explainability, transparency, trustworthiness) and potential implementation options. identify sources of bias and discuss how to avoid it. define the role of humans in the process of developing and using AI systems.
 describe sub-fields, paradigms and the interdisciplinary nature of the topic. describe the issue of defining natural intelligence and what that means for AI. name key 	 Implement selected informed and uninformed search algorithms. describe the functioning of local search algorithms. compare common search problems with adversarial search and explain how a respective algorithm, e.g. Minimax, works. implement constraint satisfaction problems using backtracking. Knowledge Representation formulate a suitable problem representation for a search problem (start/goal state, operators, etc.). 	 learning and explain the differences between them. identify different types of tasks in machine learning, describe examples of applications of these (e.g. their input features, output, goals) and the limitations of machine learning. explain the core steps of machine learning (training, testing, evaluation, etc.) and the importance of data and its 	 explain the importance of speech and vision recognition (perceptual abilities) in AI and describe key applications that implement these aspects (e.g. face recognition, speech recognition, preferably by example). explain concrete techniques AI systems can use to perceive and interpret the world (e.g. sensors & sensor data, CNNs, text classification 	 Al, Identify strengths and limitations. analyze the development of Al and assess the probability of possible future scenarios. describe thought experiments such as the Chinese Room or the Turing Test and thus shed light on the question of whether machines can think.
 define AI and describe sub-fields 	the problem of combinatorial explosion.	describe central paradigms of machine	of programmability.	 evaluate opportunities and risks of AL identify strengths and

Course Development Process

identify student pre-concepts about AI and align their teaching to them.

• appropriately select AI contexts and applications for class based on the students' identity, values and social backgrounds.

ddi.tf.fau.de

annabel.lindner@fau.de